
HOMEWORK 12

Due date: Monday of Week 13

Exercises: 5.1, 5.2, 5.3, 5.6, 6.2, 6.3, 6.5, 6.6, 6.7, 6.10, 6.11, 8.1, 8.2, 8.6, 8.7, 8.8, 8.10, 8.12, 10.1,
10.2, 10.4, 11.4, 11.6, 11.8, 11.9, pages 72-76 of Artin’s book

One important construction in group theory which is not covered in the textbook is semidirect
product. We define it here. Given a group N , recall that Aut(N) denotes the group of all auto-
morphisms of N . It is consisting of all f : N → N such that f is an isomorphism. For example, if
N = Z+, the map f : N → N defined by f(x) = −x is an automorphism. The group structure on
Aut(N) is just composition.

Let H and N be two groups and let φ : H → Aut(N) be a group homomorphism. In particular,
for each h ∈ H, φ(h) : N → N is an automorphism. We now define a group N oφH, which is called
the (outer) semidirect product of N with H with respect to φ. As a set, NoφH is just the Cartesian
product of N with H, namely, as a set N oφ H = {(n, h)|n ∈ N,h ∈ H}. The group operation •
(product in the group) is defined by

(n1, h1) • (n2, h2) = (n1φ(h1)(n2), h1h2), n1, n2 ∈ N,h1, h2 ∈ H.

Here recall that φ(h1) : N → N is an isomorphism, and thus φ(h1)(n2) ∈ N . Note that if φ is the
trivial homomorphism, namely, φ(h) = idN for every h ∈ H, then N oφH is just the direct product
N ×H. Thus semidirect product is a generalization of product.

Problem 1. Show that N oφ H defined above is indeed a group. Moreover, consider the map
iN : N → N oφ H defined by iN (n) = (n, 1) and iH : H → N oφ H defined by iH(h) = (1, h).
Show that iN , iH are injective group homomorphisms. Furthermore, show that iN (N) is a normal
subgroup of N oφ H.

One might ask how the group structure of N oφ H depends on φ.

Problem 2. Let f : H → H be an automorphism and let φ1 : H → Aut(N) be a group homomor-
phism. Consider φ2 = φ1 ◦ f : H → Aut(N). Show that N oφ1

H ∼= N oφ2
H.

Let n be a positive integer and let Cn denote the cyclic group of order n. We can realize
Cn ∼= Z/nZ with addition as the group operation.

Problem 3. Show that Aut(Cn) = Aut(Z/nZ) ∼= (Z/nZ)×. Here recall that

(Z/nZ)× = {a ∈ Z/nZ : there is an element b ∈ Z/nZ, such that ab = 1} .

The group structure on (Z/nZ)× is multiplication.

If n = 10, this is Exercise 6.10 (a).

Problem 4. Let p, q be two primes.

(1) If there exists a non-trivial group homomorphism Cq → Aut(Cp), show that q|(p− 1);
(2) Suppose q|(p− 1). Determine all group homomorphisms Cq → Aut(Cp);
(3) Suppose q|(p − 1). Let φ1, φ2 be two different nontrivial group homomorphisms Cq →

Aut(Cp). Show that there exists an isomorphism f : Cq → Cq such that φ2 = φ1 ◦ f .
(4) Suppose q|(p− 1). Conclude that there are only two isomorphism classes Cp oφ Cq.

(This one might be hard. For part (3), you might need to use the following fact. The group
(Z/pZ)× is a cyclic group. We will prove this later.)
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We now consider a special case of semidirect product. Suppose that N and H are both subgroups
of a group G with N ∩ H = {1}. Moreover, suppose that for any h ∈ H and n ∈ N , we have
hnh−1 ∈ N . If this condition is satisfied, we say that H normalizes N . Then we define

φ : H → Aut(N)

by φ(h)(n) = hnh−1. Then we can form the semidirect product. N oφ H. In this case, we often
drop φ from the notation, and write it as N oH.

Problem 5. Show that there is an injective homomorphism N oH → G.

Hint: the map is just (n, h)→ nh.
We then identify N o H as a subgroup of G. This is called the inner semidirect product of N

and H.

Problem 6. Suppose that N,H are two subgroups of G. Show that G = N oH if and only if the
following conditions hold.

(1) N is normal in G;
(2) G = NH;
(3) N ∩H = {1}.

Compare this with Proposition 2.11.4, page 65.

Problem 7. Show that the quaternion group H defined in (2.4.5), page 47 of Artin’s book is not a
semidirect product of its two proper subgroups.

The following are some examples of semi-direct product.

0.1. GLn(F ) = SLn(F ) n F×. Let F be a field and let n be a positive integer. Consider the group
G = GLn(F ) and its subgroup N = SLn(F ) = {g ∈ GLn(F ) : det(g) = 1} and

H =

{(
a

In−1

)
: a ∈ F×

}
∼= F×.

Then from Problem 6, we can check that G = N o H. For example, to check G = NH, for any
g ∈ G, we consider

n = g

[
det(g)−1

In−1

]
∈ N,h =

[
det(g)

In−1

]
∈ H.

Then g = nh ∈ NH.

0.2. Sn = An o (Z/2Z). Suppose n ≥ 2. Let G = Sn and N = An. Moreover, take σ = (12) ∈ Sn
and H = {1, σ} ∼= Z/2Z. We can check from Problem 6 that G = N oH. Here we just check that
G = NH. For any g ∈ Sn. If g is a even permutation, then g ∈ An. If g is an odd permutation, then
n = gσ ∈ An. Thus g = (gσ)(σ) ∈ NH. For example, S3 = N nH, where N =

{
1, x, x2 : x3 = 1

}
and H =

{
1, y : y2 = 1

}
.

0.3. Groups of order pq. Let p, q be two distinct prime numbers and let G be a group of order
p, q. Then there exists a normal subgroup N (of order p or q) and a subgroup H (or order q or
p), such that G = N oH. This could be proved using Sylow’s theorem, which we will learn later.
Thus by Problem 4, there are at most two isomorphism classes of groups of order pq. Assume q < p.
Actually, by Problem 4, if q - (p− 1), there is only one group of order pq, which is a direct product
Cp ×Cq ∼= Cpq. Hence it is cyclic. If q|(p− 1), there are two isomorphism classes of groups of order
p, q. One is cyclic, and the other one is a non-trivial semi-direct product (non-abelian).
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